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The exact numerical solution of a Schrodinger equation with 
two-Coulomb centres plus oscillator potential 
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AbstncL A numerical technique of solving he Schd inge r  equation with nuoCoulomb 
Centres plus the aseillator Hamiltonian has hecn developed. A s h e m e  of evaluating 
energy levels and wavefunclions of such a Hamiltonian is described in =me detail. The 
propased algorithm also a l l o w  Ihe study of analytical propenia of energy levels in a 
complex plane of Ihe internuclear distance, i.e. to find positions of branch p in t s  in the 
mmp!e?! :!ax. Ex p!e!~!c e!!ips!?a! ex?i!z!s e.zh!c xp=tin:! ot ~&zt?!cs h the 
equation studied which greatly bcilitates the solution. A numerical method for 6nding 
branch point positions for an arbitrary analytical function is outlined. 

1. Introduction . 

The main idea of this work was to provide a suitable basis for finding energy levels 
and wavefunctions of the Hamiltonian proposed by Solov'ev and Vinitsky [l, 21. When 
calculating probabilities of various inelastic processes in atomic collisions, use of this 
Hamiltonian would facilitate taking into account the internuclear axis rotation and 
electron momentum transfer effects in the most natural way. 

The Hamiltonian considered in this work represents an essential part of the 
Solov'ev-Viitsky one and consists of two-Coulomb centres and spherical oscillator 
potentials. The most important feature of this Hamiltonian is the possibility of 
separating variables in the prolate ellipsoidal coordinates. 

Here we describe the method of energy levels and evaluation of wavefunctions 
using separation of variables, which is similar to that proposed in [3-51. Further, we 
discuss the results of energy levels, branch points in the complex plane of internuclear 

I 

I distance and wavefunction calculations. 

2. Basic expansions and rrcurrent equations 

We want to find the eigenvalues and eigenfunctions of the following Schrodinger 
equation (atomic units everywhere unless explicitly stated otherwise): 

t On leave from: A F loRe Physical 'Ethnical Institute of Academy of Sciences, 194021, Leningrad, 
Russia. 
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3320 D B firebtukov 

In prolate ellipsoidal coordinates (defined in appendix A) we can separate vari- 
ables in equation (1) and obtain three ordinary differential equations connected by 
separation constants p and A: 

where p o  = m, y = a / 8 ,  a = R(Z2 + Zl), b = R ( Z 2  - Zl), The boundary 
conditions require that function X ( ( )  should be finite when - 1 and E + CO, 

function Y ( q )  should be finite when q + +l and Z(p) = Z ( p +  Z r r n ) ,  n = 
0 , 1 , 2 . .  .. 

The equation depending on the azimuth angle can be solved directly, so we have 
only hvo non-trivial equations: 

where m is the azimuthal quantum number. 

Y ( q )  as follows: 
We find the solutions of these two equations by expanding functions X ( ( )  and 

where 0 = p;/Zfi + m + 1,  

where Pifm(q) are the Legendre functions. 

equations for the expansion coefficients: 
Substituting these expansions in equations (2) and (3) we can write recurrent 

n,+,g,+1 + nags + “.-19,-1 + “.-29,-2 + ns-3gs-3 = 0 (6) 

s,+2fl+2+sl+L.fI+l + ~ , f l + L , f , - l  + k 2 f , - 2 = 6  (7j 

and the coefficients k and 6 are 

n,+, = ( s + l ) ( s + m + l )  



1 6,-, = -b  
2(1+ m )  - 1 

1 + 2 m + 1  
( 1 +  m )  + 3 & I + ,  = -b2 

l ( 1 -  1 )  
61-2 - - - 2 f i ( l + P - i )  (2(1+m) -1)(2(1+m)-3)  

( 1  + 2m +2)(1+2m+ 1) 
+ 2 m -  '+ 4 )  (2(1+ m) + 5 ) ( 2 ( 1 +  m )  + 3 ) '  

The coefficients 6, reduce to the well h o w n  two-Coulomb centres five-member 
recurrent equation coefficients (e.g. [6]) when a - 0. In contrast, the coefficients K~ 

tend to infinity under the same conditions and this can be explained by the incompat- 
ibility of the oscillator's Gaussian asymptotic with that of Coulomb exponential. This 
incompatibility will be discussed in section 3.3. 

3. Results 

9 I r7..̂I_. ,-..-,- 
2.1. r;ner&y ="=U 

Energy levels in the system studied are the eigenvalues of the Hamiltonian in equa- 
tion (1). RI evaluate these one should simultaneously find roots of the two determi- 
nants of infinite systems of linear algebraic equations. 'lb be more exact, we should 
solve the following two equations: 

lim D:(E,X)  = 0 
8-m 

where D:(E,X)  and DP(E,X)  are determinants of the first s and 1 ,  equa- 
tions (6) and (7) respectively. 

It is easy to see that equation (1) has well h o w n  solutions when parameters 01 

and R tend to infinity or to zero. 
(i) When R -+ 0, equation (1) reduces to a spherical harmonic mcillator problem 

with equidistant energy levels E,, = U( N + +), where w = 6. 
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(ii) If a -, 0 or R -+ cc then the energy levels will be very close to those of a 

These properties of equation (1) serve as a very convenient means of checking 

The oscillator energy structure is evident in figure 1. 
The Coulomb behaviour of energy a t  large R was used for classification of energy 

levels. We use parabolic quantum numbers n, n, ,  n2, m of the one-Coulomb centre 

separations R e.g. for Z, = 1 and 2, = 2 these nuclei are H and He respectively. 
It was shown that calculated energy levels can be very well approximated by the usual 
asymptotic formula for two-Coulomb centres (e.g. [6])  with charges linearly depending 
on R, i.e. Zi -+ ZiR.  

Finally we can write exact correlation rules to connect parabolic quantum numbers 
{n l ,  n2, m }  at large R with elliptic numbers {k, q ,  m} and with spherical numbers 
of the harmonic oscillator { N, 1 ,  m )  at R = 0. Elliptic quantum numbers k and q 
are equal to the number of zeros of ‘radial’ and ‘angular’ wavefunctions respectively, 
so, noting that the number of zeros should be the Same in all three cases, we obtain 
the following correlation rules: 

two-Coulomb centre (see [SI) multiplied by R2. 

the proposed algorithm consistency. 

$“em and a_ ymho! of !!uc!c??s vrhich !!!!E Stl!L: k!czgs to I t  !rrge ktereuc!ear 

(i) parabolic to elliptic (2, > 2,): 

k = n ,  (10) 

z .  

z .  
if n l  IS an integer 

if n l  IS not an integer 

z2 - z, 
2, Z ,  

2n2 + n 
2 n 2 + 1 + E n t  [n z2 - z, 

z, ] Zl 

for Z,-states 

z2 - 21 
z2 

z2 

if n2 < n 

i f n , > n  z* - 2, 
for Z,-states 

(11) 

(ii) elliptic to spherical: 

N = Zkf  q f  m (12) 

l = q + m  (13) 

Only equation (12) of the above rules differs from the similar expression for two- 
Coulomb centres without the oscillator. 

We calculated energy levels on the real axis of R in the wide range of d e  main 
parabolic quantum number n = 1,2,. . . , 5  and in all cases results were in accordance 
with these exact correlation rules. 

Thus all the facts stated above convince us that our method gives correct values of 
E( R ) .  The main ideas of the solution algorithm of equations (8) and (9) are outlined 
in appendix B. We can only state here that the algorithm allows us to calculate energy 
levels as an analytical function of internuclear distance R in a complex plane of the 
latter with controllable accuracy of no less than five correct digits. 
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9 ,  

-11 1 '  I 1 1  ' I I I ' 1 - 1  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ReR 

Figum t Calculated energy levels for 01 = 0.5 and small R. The harmonic 06cillator 
energy structure is clearly Seen at R = 0. See discussion of branch pints  mnnecting 
these four levels in subseclion 3.2. 

3.2. Branch points 

It was shown recently that quantitative information on atomic collisions can be ob- 
tained when calculating energv levels of a quasimolecular system as an analytical 
function in a complex plane of internuclear distance R. The positions of branch 
points of the E( R) function tumed out to be connected with regions of inelastic 
eiectronic transitions in the quasimoiecuie. "he probabiiity of such a transition can 
be evaluated using contour integration along a path circumventing a branch point 

In contrast to the pure two-Coulomb centres case (see [7]) for fixed charges Z, 
and Z, it is not only simple positions of branch points that are relevant but also 
trajectories of branch points as functions of parameter a play an important role. A 
method of finding branch points is described in some detail in appendix C. 

Some trajectories of branch points are shown in figure 2 Here we have an 
interesting example of what happens to the analytical structure of the energy levels 
of two-Coulomb centres in the complex plane of R when dynamic effects represented 
by a are taken into accountt. Figure 2 shows that the higher the energy level, the 
faster the S-seriest branch point moves away from the real axis and into the region 

a 2: 2. Because the probability of transition between two energy levels in adiabatic 
approximation depends on the position of a branch point that connects them, such 
behaviour of the S-series has serious physical consequences: the most important one 
consists in a sharp decrease of probability to reach higher energy levels through the 
S-series. 

All t h e  hr2nr.h @nts give!! in figure 2 have a simp!e quare rwt struC!o~ei and the 

(see PI). 

D-  D , n. L f-n+ .no1 ---+ nf UnA?ln __ Un<?ltl hr-nrh m;nf h i r n o  nnno+:.m -+ 
1LG 11 \ ". U. L P L . ,  U,.. ,can p . L  V L  I IC-.LIY - LA.,.,.,L" ".".....I. y v L 1 . L  ."LA... .. C'bYL"" P L  

t Far straight line trajectories of nuclear motion 01 = where 1) is the Rlative velocity of mlliding 
nuclei and p lhe impact parameler (see [Z] for details). 
$ Branch p i n 1  classification p m p e d  for pure two-Coulomb centres in 171 can also be applied here, 
because when o - 0 the p i l i o n s  of branch p i n t s  lend lo those of two-Coulomb oentres. 
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Flgure I 'Rajeclories of branch poinu for S-~nes. Numbers beside the p ints  denote 
the value ot n for this point. Symbols: open circle = branch p i n t  mnneciing HIOM) 
energy level with He3110; full drcle = the s m e  for He3110 i He4ZIO; slar = the 
same tor He4210 + He5310. 

logarithmic behaviour inherent to the S-series (see [2]) appears only after combining 
them. But as the a increases, the distance between these branch points also increases 
and this leads to the ultimate destruction of logarithmic structure of the Riemann 
surface here. 

3.3. Wuvefincfiom 
The 'radial' and 'angular' parts of wavefunctions are determined by equations (4) 
and (5) respectively. The coefficients in these expansions can be found by solving 
equations (6) and (7) with the zero initial conditions: 

k-, = IC- ,  = IC-, = 0 

6-, = 6-, = 0 

These systems are self-consistent because the energy and separation constant found 
in section 3.1 put to zero determinants of these systems of homogeneous algebraic 
equations. The optimal size of a finite system to be solved can be obtained empirically 
by checking the convergence of radial and angular parts of wavefunctions as the size 
is being increased. Usually no more than 2C-30 equations are needed for angular 
wavefunctions, and no more than 50-100 for radial ones. 

Radial coefficients g, and angular coefficients f l  show quite different behaviour 
as their indices increase. Angular coefficients f, decrease very rapidly when 1 - 00, 

and this dependence is not sensitive to the value of parameter a. On the other 
hand, radial coefficients demonstrate oscillations when a - 0. After several such 
oscillationst the radial coefficients also rapidly decrease, so convergence of the sums 
(4) and (5) is guaranteed in any case. 

t Ti-,= number of willations depends MI the n l u e  of a: the smaller a the more numerous are the 
oscillations. 
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Such an oscillatory pattern for the radial coefficients can be explained in the 
following way. In the radial expansion (4) asymptotics of the corresponding differen- 
tial equation solution are taken into account explicitiy, and the most important part 
of these is the harmonic oscillator asymptotics exp[-(fi/2)E2]. However, when 
the oscillator parameter a is very small, there is a certain region of coordinate F 
where the Coulomb part of the Hamiltonian (1) would already behave asymptotically 
(like exp(--p&)), although the oscillator is too weak to overshadow an exponential 

coefficients serve to ‘correct’ the difference between these two asymptotics. 
After the coefficients of expansions (4) and (5) are found the overall wavefunction 

should be normalized to represent the amplitude of probability density. Normalizing 
integrals are 

sy.r,pt& .*%t, a GZGsian ~i,~, so these large aci;;atioi,s ifi the M;.ues of 

It should be noted that we use simple squares of functions X(() and Y(v) (in con- 
trast to the usual square of a mmplex absolute value) in order to preselve analytical 
properties of the wavefunctions when calculating in the complex plane of R. The 
normalization in equation (14) is not essential, but it can be performed to reduce the 
Y(q) function to a normalized spherical harmonic when R - 0. 

4. Conclusion 

Thus a method of numerical solution of the Schrodinger equation (1) has been 
developed in this work. The method includes evaluation of equation (1) eigenvalues 
(energy levels) and eigenfunctions (wavefunctions). Special care was taken to preserve 
analytical properties of the energy levels and wavefunctions in the complex plane 
of internuclear distance R, so this method can be used to evaluate positions of 
branch points which connect different energy levels into one Riemann surface. The 
knowledge of the branch p i n t  positions is very important for calculating probabilities 
of transitions between different states in atomic collisions. 

This work is intended as the first step on the way to solve the Schrodinger 
equation with the Solov’ev-Vinitsky Hamiltonian (see [Z]); this would provide the 
fullest physical description of binary atomic collisions, including momentum transfer 
and internuclear axis rotation effects. Energy levels and wavefunctions found in this 
work will serve as a good initial approximation for the solution of the Solov’ev- 
Vinitsky modified Schrodinger equation. 
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Appendix A. Prolate ellipsoidal coordinates 

Prolate ellipsoidal coordinates can be defined by the following equations: 

p=ttan-'(:) 0 < i p < 2 n  

where T ]  and T~ are the distances from the first and the second centres respectively 
(see figure 3). 

Figure 3. Prolate ellipsoidal " d i n a l e s  scheme 

The Cartesian coordinates can be expressed in terms of prolate ellipsoidal ,coor- 
dinates in the following way: 

( e 2  - 1)( 1 - 72)  cos (0 

y =  -J(<2-1)(1-q2)sinip 

R 
2 = -  

2 J  

ti 
2 

R 
2 = -[q. 

2 

The Laplacian operator in these coordinates is given by 

The differential element of volume is 

R3 
8 

d V  = - (t2 - q 2 )  dtdqdip. 
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Appendix B. Method of determinant equations solution. Sliding LU decomposition. 

'Ib Solve the nonlinear equatiom (8) and (9) we use a quite ordinary gradient 
method, and the non-trivial part of this solution consists in the way the functions 
lims-m D:( E, A )  and liml-w Dp( E, A)  are calculated. 'Ib evaluate determinants 
in these functions we use Lu decomposition of the relevant matrices. This method 
is especially effective for matrices with a compact narrow hand of non-zero elements 
along the diagonal, because LU decomposition does not change the band structure 
and on each step only a limited number of matrix elements is affected. Figure 4 shows 
the calculation scheme for both radial and angular matrices. The shaded rectangles 
include matrix elements which take part in LU decomposition on each step. This 
shaded area slides down the five-diagonal matrix without changing its structure. The 
determinant is given hy the product of the resultant diagonal elements (marked by d 
letters). 

. . . . .  . . .  

. . . . .  . . . . .  
_. ngure 4. iktenninani Caicuiaiion =heme: mdiai ceiij and anguiar (righij mairix 
structures. 

Tabk 1. EmpiFical values of the mefficient C for different numbers of mmel digits in 
E and A. 

Correct digits 

Accuracy- < 5 6 > 7 

C 10 12 14 

The second important element of the algorithm is the limit calculation in func- 
ticPS !;E$-- nrl ,-,, P )I) ', ".... ..... 
equations (6) and (7) tend to large numbers which depend weakly on E or X and, 
therefore, the matrix elements with large numbers only slightly shift the position of 
a determinant zero. The minimum values of I and s indices when the determinant 
calculation should stop can be derived from the explicit formulas for coefficients k, 
and 6,. 

-";(E, A), & ! q e  2nd 1 the s ~ f f i ~ i ~ s $  

I,,, = smln >, c max(O, 
The value of coefficient C depends on the desired number of correct digits in E 
and X and the empirical results for the studied variety of energy levels are shown in 
table 1. 
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Appendix C. A numerical method of finding mot-like branch points 

Let us consider an arbitrary function of a complex variable C( R )  and assume that 
C ( R )  has a root-like branch point R,. This means that in the ~c in i ty  of R, the 
function behaves approximately like a square root: 

C( R )  w A m  

where A is a constant. 
Expression (16) allows us to develop several numerical schemes to find the un- 

known value of R,. We used a two-point iterative scheme that was successfully 
applied by S Y Ovchinnikov (private communication) in the case of the branch points 
of pure two-Coulomb centres. In this method the value of R, on the next iteration 
is given by the following formula: 

The iterations continue until the condition [Ri+? - Ril < E is fulfilled, where 
E is the required accuracy of the branch point position. The number or iterations 
necessary to obtain the required result depends on the initial approximation, and for 
a good choice of the first point does not exceed 5 or 10. If the initial point is not 
properly chosen then the iteration step may become too big, but even in this case 
formula (17) provides the right direction to the branch point, so the latter can still 
be found by reasonably limiting the iteration step in this direction. 
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